Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies

Janet M. Siliciano PhD
Johns Hopkins University
School of Medicine

Disclosures: None
Slow decay of latently infected CD4+ T cells

Time to eradication > 73.4 years

Finzi et al., Nature Med., 1999
Virus culture assay for latent HIV-1 in resting CD4+ T cells

180-200 ml blood

Purified resting CD4+ T cells

5x10^6 10^6 2x10^5 4x10^4 8x10^3 1.6x10^2 Negative control

Finzi et al, Science 1997
Finzi et al., Nature Med., 1999
Virus culture assay for latent HIV-1 in resting CD4+ T cells

- Detects individual latently infected cells
- Detects cells with latent viruses capable of robust growth in vitro in primary CD4+ T cells
- Does not detect cells with defective viruses
- No other approach has given a higher frequency of cells with replication competent virus
- BUT labor-intensive and costly

Finzi et al, Science 1997
Finzi et al., Nature Med., 1999
Comparison of reservoir assays

- SCOPE, Chronic, n=20
- Options, Acute, n=10

180 ml blood → GALT biopsy → HIV RNA:DNA ratios

160 ml → 20 ml → Ancillary studies

Separate: plasma PBMC

Send to JHU
Send to Karolinska
Send to UCSD

Single copy assay for RV, single genome sequencing
Digital droplet PCR

Purified resting CD4+ T cells

Total and integrated HIV-1 DNA
Viral outgrowth assay

Sites:
- UCSF
- JHU
- Karolinska
- UCSD
- U Penn

Correlation between culture and PCR assays

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>P</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>0.20</td>
<td>0.29</td>
<td>30</td>
</tr>
<tr>
<td>Chronic</td>
<td>-0.04</td>
<td>0.87</td>
<td>18</td>
</tr>
<tr>
<td>Acute</td>
<td>0.46</td>
<td>0.18</td>
<td>20</td>
</tr>
</tbody>
</table>

HIV DNA (copies/10^6 PBMC)

Viral outgrowth (IUPM)

Infected cell frequency

Viral outgrowth

Total HIV DNA

2 LTR circles

Integrated HIV DNA

Total HIV DNA

Residual viremia

Assay for persistent HIV in patients on HAART

<table>
<thead>
<tr>
<th>Assay</th>
<th>Viral outgrowth</th>
<th>Total HIV DNA</th>
<th>2 LTR circles</th>
<th>Integrated HIV DNA</th>
<th>Total HIV DNA</th>
<th>Residual viremia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell/tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting CD4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting CD4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plasma HIV RNA (copies/ml)

Eriksson et al, PLoS Pathogens, 2013
Ratio of infected cell frequencies by PCR and culture assays

Infected cell frequency (per 10^6)

Viral outgrowth

Total HIV DNA

2 LTR circles

Integrated HIV DNA

Total HIV DNA

Residual viremia

Assay for persistent HIV in patients on HAART

Which assay should be used?

Non-induced proviruses

Resting CD4+ T cells

Non-induced proviruses

PHA + irradiated allogeneic PBMC

d2:CD4+ blasts from HIV-donors
d7:CD4+ blasts from HIV-donors

5x10^6 10^6 2x10^5 4x10^4 8x10^3 1.6x10^2 Negative control

Full length, single genome analysis

Non-induced ≠ non-inducible

Ho et al, Cell, 2013
Clonal analysis of non-induced proviruses

9.1 KB limiting dilution PCR

Nested gag PCR to establish clonality

Direct sequencing of PCR products
No cloning!

Ho et al, Cell, 2013
Non-induced proviral clones (n=213)

Hypermutated 32.4%

TGG → TAG
Trp → Stop

Ho et al, Cell, 2013
32.4% of non-induced proviruses have G→A hypermutation

ATG → ATA
M→I
start codon mutation

B.FR.83.HXB2_LAI_IIIB_BRU_K034
9CC3_31E5_gag_hypermut
9CC3_31E11_gag_hypermut
20CB4_36D12_gag_hypermut
20TB1_33C3_gag_hypermut
20TB1_33C9_gag_hypermut
20TB3_33G10_gag_hypermut

ATGGTGGAGAGCGTGTTATTAGCGGGGGAATGATCGAGGGAAAAATTCTGTTAACCCAGGGGAA

A..........................A.............A............................A.......C...........

TGG → TAA, TAG, TGA
Tryptophan → stop codon
nonsense mutation

B.FR.83.HXB2_LAI_IIIB_BRU_K034
9CC3_31E5_gag_hypermut
9CC3_31E11_gag_hypermut
20CB4_36D12_gag_hypermut
20TB1_33C3_gag_hypermut
20TB1_33C9_gag_hypermut
20TB3_33G10_gag_hypermut

MGARASVLSSGELDEWVKIIRPGKGGKYLKHIVWASRELFAVNPGLLETSACRCQILGQLPML
 IS....................I.R...............Q.K..................L.*.CK.............S.A...R....
 I....................Q...............R.N.R......................AG........E...A.
 I....................Q...............R.N.R......................AG........E...A.
 I....................Q...............R.N.R......................AG........E...A.
 I....................R.Q..............E.N.R......................K............AG...E...A.
Non-induced proviral clones (n=213)

Large internal deletion 45.5%

Hypermутated 32.4%

Ho et al, Cell, 2013
45.5% of non-induced proviruses have large internal deletions

Ho et al, Cell, 2013
Non-induced proviral clones (n=213)

- Nonsense mutations/INDELS 3.8%
- Deletion in ψ/MSD site 6.5%
- 11.7% Intact genome
- Large internal deletion 45.0%
- Hypermutated 32.4%

Ho et al, Cell, 2013
Replication-competence of non-induced proviruses

Non-induced proviral sequence

pNL4-3

LTR

Transfection into 293T cells

Virus production

Infection of primary CD4+ T lymphoblasts
Replication of non-induced proviruses clones

Ho et al, Cell, 2013
Non-induced proviruses have functional LTRs except for hypermutated clones.

NF-κB

Sp1-III

Sp1-II

Sp1-I

HXB2

NF-κB

Hypermutated
Clonal analysis of DNA methylation

Patient 20

Cells from p24 negative co-culture well

Single genome bisulfite sequencing

Ho et al, Cell, 2013
Non-induced proviruses integrate into active transcription units

- Location
 - Intron, 82.9%
 - Exon, 5.7%
 - Other, 4.3%
 - Intergenic space, 7.1%

- Activity of genes

Transcription units: 92.9% (65/70)

Ho et al, Cell, 2013
Intact vs induced proviruses

62 fold

Ho et al, Cell, 2013
Can intact non-induced proviruses be induced?

180-200 ml blood

Purified resting CD4+ T cells

PHA + irradiated allogeneic PBMC

Recover cells from negative wells

5x10^6 10^6 2x10^5 4x10^4 8x10^3 1.6x10^2 Negative control

d2: add CD4+ lymphoblasts from HIV- donors

d7: add CD4+ lymphoblasts from HIV- donors

Ho et al, Cell, 2013

p24 Ag
Can intact non-induced proviruses be induced?

Ho et al, Cell, 2013
Thanks

Collaborators
Robert Siliciano Matt Strain
Steve Deeks Sarah Palmer
Dave Margolis Una O’Doherty
Doug Richman Joe Wong
Jon Karn Steve Yukl
Martin Nowak

Funding
Foundation for AIDS Research
(amFAR): ARCHE
NIH: Martin Delaney Collaboratories
 CARE and DARE
Johns Hopkins Center for AIDS
 Research
Howard Hughes Medical Institute