Comparison of latent HIV-1 reactivation in multiple cell model systems

Celsa A. Spina, Jenny Anderson, Nancie M. Archin, Alberto Bosque, Jonathan Chan, Marylinda Famiglietti, Warner C. Greene, Angela Kashuba, Sharon R. Lewin, David M. Margolis, Matthew Mau, Debbie Ruelas, Suha Saleh, Kotaro Shirakawa, Robert F. Siliciano, Akul Singhania, Paula C. Soto, Valeri H. Terry, Eric Verdin, Christopher Woelk, Stacey Wooden, Sifei Xing, and Vicente Planelles

Veterans Administration San Diego Healthcare System

University of California San Diego

Alfred Hospital and Monash University, Melbourne, Australia

University of North Carolina at Chapel Hill

University of Utah School of Medicine

Gladstone Institute of Virology and Immunology, University of California San Francisco

Johns Hopkins University School of Medic

	TCR		PKC			Cytok		HDACi		PTEFb	Ca+			
				_	Max	kimal Leve	el of HIV F	Respons	e with Diff	erent St	imuli			
T Cell Model	Group	aCD3/28	PHA-M	PMA	PMA+lo	Prostratin	Bryostatin	$TNF\alpha$	IL-7 + IL-2	SAHA	MRK-1	MRK-11	НМВА	lonomycin
Patient CD4 Cells	Margolis													
Quiescent CD4	Greene	1												
Quiescent CD4	Lewin	Ι												
Quiescent CD4	Spina]												
Cultured CD4/Tcm	Planelles]												
Cultured CD4/Tem	Siliciano]												
J-Lat 5A8	Verdin	1												
J-Lat 6.3	"	Ī												
J-Lat 8.4	"	Ī												
J-Lat 11.1	"	I												

		TCR		PKC				Cytok		HDACi		i	PTEFD	Ca++
					Max	kimal Leve	el of HIV I	Response	e with Dif	ferent Sti	imuli			
T Cell Model	Group	aCD3/28	PHA-M	PMA	PMA+lo	Prostratin	Bryostatin	TNFα	IL-7 + IL-2	SAHA	MRK-1	MRK-11	НМВА	lonomycin
Patient CD4 Cells	Margolis													
Quiescent CD4	Greene													
Quiescent CD4	Lewin													
Quiescent CD4	Spina													
Cultured CD4/Tcm	Planelles													
Cultured CD4/Tem	Siliciano													
J-Lat 5A8	Verdin								_			1	T	L
J-Lat 6.3	"													
J-Lat 8.4	11													
J-Lat 11.1	н													

- The maximal response for most primary models was obtained through TCR stimulation. Some models were refractory toαCD3+αCD28
- Cells were universally responsive to PKC agonists, in particular phorbol esters PMA and prostratin
- TNFα was very variable and so was IL-2+IL-7 treatment

Figure S2

TNFR

~

		TCR		PKC			Cytok		HDACi		PTEFb	Ca++		
					Max	kimal Leve	el of HIV F	Response	e with Dif	ferent Sti	imuli			
T Cell Model	Group	aCD3/28	PHA-M	PMA	PMA+lo	Prostratin	Bryostatin	$TNF\alpha$	IL-7 + IL-2	SAHA	MRK-1	MRK-11	HMBA	lonomycin
Patient CD4 Cells	Margolis													
Quiescent CD4	Greene													
Quiescent CD4	Lewin													
Quiescent CD4	Spina													
Cultured CD4/Tcm	Planelles													
Cultured CD4/Tem	Siliciano													
J-Lat 5A8	Verdin											1	T	L
J-Lat 6.3	"													
J-Lat 8.4	11													
J-Lat 11.1	н													

- The maximal response for most primary models was obtained through TCR stimulation. Some models were refractory toαCD3+αCD28
- Cells were universally responsive to PKC agonists, in particular phorbol esters PMA and prostratin
- TNFα was very variable and so was IL-2+IL-7 treatment
- HDACi (and HMBA): Lewin model highly responsive to all. Some systems not at all responsive.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 288, NO. 20, pp. 14400–14407, May 17, 2013 © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

Histone Deacetylase Inhibitors (HDACis) That Release the Positive Transcription Elongation Factor b (P-TEFb) from Its Inhibitory Complex Also Activate HIV Transcription*

Received for publication, February 25, 2013, and in revised form, March 27, 2013 Published, JBC Papers in Press, March 28, 2013, DOI 10.1074/jbc.M113.464834

Koen Bartholomeeusen^{‡1}, Koh Fujinaga^{‡2}, Yanhui Xiang^{‡§}, and B. Matija Peterlin^{‡3}

From the [‡]Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, California 94143-0703 and the [§]State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Background: HDACis activate HIV transcription.

Results: P-TEFb release from 7SK snRNP correlates better than histone H3 or tubulin acetylation with HIV reactivation by HDACis in cell lines.

Conclusion: Levels of P-TEFb must be increased before HDACis can reactivate HIV in resting primary CD4⁺ T cells. **Significance:** Levels and activity of P-TEFb are critical for HIV reactivation in all cells.

		TCR		PKC			Cytok		HDACi		PTEFb	Ca++		
					Max	kimal Leve	el of HIV F	Response	e with Dif	ferent Sti	imuli			
T Cell Model	Group	aCD3/28	PHA-M	PMA	PMA+lo	Prostratin	Bryostatin	$TNF\alpha$	IL-7 + IL-2	SAHA	MRK-1	MRK-11	HMBA	lonomycin
Patient CD4 Cells	Margolis													
Quiescent CD4	Greene													
Quiescent CD4	Lewin													
Quiescent CD4	Spina													
Cultured CD4/Tcm	Planelles													
Cultured CD4/Tem	Siliciano													
J-Lat 5A8	Verdin											1	T	L
J-Lat 6.3	"													
J-Lat 8.4	11													
J-Lat 11.1	н													

- The maximal response for most primary models was obtained through TCR stimulation. Some models were refractory toαCD3+αCD28
- Cells were universally responsive to PKC agonists, in particular phorbol esters PMA and prostratin
- TNF α was very variable and so was IL-2+IL-7 treatment
- HDACi (and HMBA): Lewin model highly responsive to all. Some systems not at all responsive.
- Ca⁺⁺ moderate responses but only in primary models

RESEARCH

HIV latency and integration site placement in five cell-based models

Scott Sherrill-Mix^{1*}, Mary K Lewinski², Marylinda Famiglietti³, Alberto Bosque⁴, Nirav Malani¹, Karen E Ocwieja¹, Charles C Berry⁵, David Looney^{2,6}, Liang Shan⁷, Luis M Agosto⁹, Matthew J Pace⁸, Robert F Siliciano⁷, Una O'Doherty⁸, John Guatelli^{2,6}, Vicente Planelles⁴ and Frederic D Bushman¹

Title	Cell type	Virus	Time of harvest after infection	Sequencing	Generation of expressed vs. silent/inducible	Citation	Silent/inducible unique sites	Expressed unique sites
Jurkat	Jurkat cells	HIV vector pEV731 (LTR-Tat-IRES-GFP)	2 weeks	Sanger	TNFα, GFP expression	[19]	463 inducible	643
Bcl-2 transduced CD4 ⁺	Primary CD4 ⁺ T cells (Bcl-2 transduced)	HIV NL4-3-∆6-drEGFP (inactivated <i>gag, vif,</i> <i>vpr, vpu, nef</i> and <i>env</i> replaced by GFP)	3 days + 3-4 weeks + 3 days	Sanger	Anti-CD3, anti-CD28 antibodies, GFP expression	[20]	446 inducible	273
Active CD4 ⁺	Primary active CD4 ⁺ T cells	HIV NL4-3	3 days	454	High vs. low Gag	[21]	1604 silent	1274
Resting CD4 ⁺	Primary resting CD4 ⁺ T cells	HIV NL4-3	3 days	454	High vs. low Gag	[21]	1942 silent	784
Central Memory CD4 ⁺	Primary central memory CD4 ⁺ T cells	HIV NL4-3 ∆Nef GFP	2 days/9 days	IonTorrent	Anti-CD3, anti-CD28 antibodies, GFP expression	This paper	1729 inducible	3278

Table 1 HIV-1 integration datasets from in vitro models of latency

Shared expression status between near neighbors. <u>The ratio of the number of pairs of proviruses with</u> <u>matching expression status to the number of matches expected by random pairings</u> given the frequency of silent/inducible proviruses. All possible pairs of proviruses integrated within a given distance of each other on the same chromosome (red line) were separated into two sets; one with both proviruses from within the same cell culture model and one with proviruses paired between two different cell culture models (black lines). The shaded region shows the 95% Clopper-Pearson binomial confidence interval for within and between sample pairings. The dashed horizontal line shows the ratio of 1 expected if there is no association between the expression status of neighboring proviruses.

Cellular expression and latency. Predictions from a logistic regression of silent/inducible status on cellular RNA expression. High y-axis values are predicted to be silent/inducible. Dotted line shows where equal odds of silent/inducible and expressed are predicted. Solid lines show predictions from the regression for each sample and shaded regions indicate one standard error from the modeled predictions.

- Conclusions from integration site comparisons -

1. Certain chromosomal locations ARE associated with a tendency to harbor silent or active proviral integrations – but in a model-specific manner

2. No relationships between genomic features near the integration site and latency achieved significance in all models.

3. Integration into alphoid repeats frequently leads to a state of latency (significant in 3 models)

4. Proviruses from the same cellular model integrated in nearby positions did share the same latency status much more often than predicted by chance, indicating the presence of local features influencing latency